Rooted Trees for 3d Navier-stokes Equation

نویسنده

  • MASSIMILIANO GUBINELLI
چکیده

We establish a representation of the solution of 3d Navier-Stokes equations in the space Φ(α, α) using sums over rooted trees. We study the convergence properties of this series recovering in a simplified manner some results obtained recently by Sinai and other known results. The series representation make sense also in the critical case where there exists global solutions for small initial data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trees for Navier-stokes

We estabilish a representation of the solution of 3d Navier-Stokes equations in the space Φ(α, α) using sums over rooted trees. We study the convergence properties of the series so obtained recovering in a simplified manner some results obtained recently by Sinai and other known results. In particular we extend the series representation of Sinai to the critical case where there exists global so...

متن کامل

Abstract integration, Combinatorics of Trees and Differential Equations

This is a review paper on recent work about the connections between rough path theory, the Connes-Kreimer Hopf algebra on rooted trees and the analysis of finite and infinite dimensional differential equation. We try to explain and motivate the theory of rough paths introduced by T. Lyons in the context of differential equations in presence of irregular noises. We show how it is used in an abst...

متن کامل

Tamed 3d Navier-stokes Equation: Existence, Uniqueness and Regularity

In this paper, we prove the existence and uniqueness of a smooth solution to a tamed 3D Navier-Stokes equation in the whole space. In particular, if there exists a bounded smooth solution to the classical 3D Navier-Stokes equation, then this solution satisfies our tamed equation. Moreover, using this renomalized equation we can give a new construction for a suitable weak solution of the classic...

متن کامل

A Tamed 3d Navier-stokes Equation in Domains

In this paper, we analyze a tamed 3D Navier-Stokes equation in uniform C-domains (not necessarily bounded), which obeys the scaling invariance principle, and prove the existence and uniqueness of strong solutions to this tamed equation. In particular, if there exists a bounded solution to the classical 3D Navier-Stokes equation, then this solution satisfies our tamed equation. Moreover, the exi...

متن کامل

Exponential mixing of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noises

We prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes are forced) via Kolmogorov equation approach.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008